Ccd что это
Перейти к содержимому

Ccd что это

  • автор:

Матрицы CCD и CMOS

Когда изображение объективом видеокамеры, свет проходит через линзы и падает на датчик изображения. Датчик изображения, или матрица, состоит из множества элементов, также называемых пикселями, которые регистрируют количество света, упавшего на них. Полученное количество света пиксели преобразуют в соответствующее количество электронов. Чем больше света упадет на пиксель, тем больше электронов он сгенерирует. Электроны преобразуются в напряжение, а затем конвертируются в числа, согласно значениям АЦП (Аналого-Цифровой Преобразователь, A/D-converter). Сигнал, составленный из таких чисел, обрабатывается электронными цепями внутри видеокамеры.

В настоящее время, существует две основные технологии, которые могут быть использованы при создании датчика изображения в камере, это CCD (Charge-Coupled Device, ПЗС – прибор с зарядовой связью) и CMOS (Complimentary Metal-Oxide Semiconductor, КМОП – комплементарный металлооксидный полупроводник). Их характеристики, достоинства и недостатки будут рассмотрены в данной статье. На рисунке ниже изображены ПЗС (наверху) и КМОП (внизу) датчики изображений.

Цветовая фильтрация. Как уже было описано выше, датчики изображений регистрируют объем света, упавшего на них, от светлого до темного, но без цветовой информации. Поскольку КМОП и ПЗС датчики изображений «не видят цвет», перед каждым из датчиков ставится фильтр, позволяющий присвоить каждому пикселю в датчике цветовой тон. Два основных метода цветовой регистрации это RGB (Red-Greed-Blue, Красный-Зеленый-Синий) и CMYG (Cyan-Magenta-Yellow-Green, Голубой-Пурпурный-Желтый-Зеленый). Красный, зеленый и синий являются основными цветами, различные комбинации которых могут составить большинство цветов, воспринимаемых глазом человека.

Фильтр Байера (или массив Байера, англ. Bayer array), состоящий из сменяющих друг друга строк красно-зеленых и сине-зеленых фильтров, является наиболее распространенным RGB-цветовым фильтром (см. Рис. 2). Фильтр Байера содержит удвоенное количество зеленых «ячеек», т.к. человеческий глаз более чувствителен к зеленому цвету, а не красному или синему. Это также означает, что, при таком соотношении цветов в фильтре, человеческий глаз увидит больше деталей, чем если бы три цвета использовались в равной пропорции в фильтре.

Другой способ фильтровать (или регистрировать) цвет – использовать дополнительные цвета – голубой, пурпурный и желтый. Фильтр из дополнительных цветов обычно комбинируется с зеленым цветовым фильтром в форме CMYG-цветового фильтра (CMYG-color array), как показано на рисунке 2 (справа). CMYG-цветовой фильтр обычно предлагает более высокий сигнал пикселя, т.к. обладает более широкой спектральной полосой пропускания. Тем не менее, сигнал должен быть преобразован в RGB для использования в итоговом изображении, а это влечем за собой дополнительную обработку, и вносит шумы. Следствием этого является снижение отношения сигнал-шум, поэтому CMYG-системы, как правило, не столь хороши при передаче цветов.

CMYG-цветовой фильтр обычно используется в датчиках изображения с чересстрочной разверткой, в то время как RGB-системы в первую очередь используются в датчиках изображения с прогрессивной разверткой.

2. CCD-технология

В CCD-сенсоре, свет (заряд), падающий на пиксель сенсора, передается от микросхемы через один выходной узел, или через всего лишь несколько выходных узлов. Заряды преобразуются в уровень напряжения, накапливаются и рассылаются как аналоговый сигнал. Этот сигнал затем суммируется и преобразуется в числа аналого-цифровым преобразователем, вне сенсора (см. рис. 3).

CCD-технология была изобретена специально для использования в видеокамерах, и CCD-сенсоры используются на протяжении 30 лет. Традиционно, у CCD-сенсоров есть ряд преимуществ перед CMOS-сенсорами, а именно лучшая светочувствительность и низкий уровень шумов. В последнее время, однако, различия едва заметны.

Недостатки CCD-сенсоров заключаются в том, что они являются аналоговыми компонентами, что требует наличия большего числа электроники «около» сенсора, они дороже в производстве и могут потреблять до 100 раз больше энергии, чем CMOS-сенсоры. Повышенное энергопотребление может также привести к повышению температуры в самой камере, что негативно сказывается не только на качестве изображения и увеличивает стоимость конечного продукта, но и степень воздействия на окружающую среду.

CCD-сенсоры также требуют более скоростную передачу данных, т.к. все данные проходят через всего лишь через один или несколько выходных усилителей. Сравните рисунки 4 и 6, показывающие платы с CCD-сенсором и CMOS-сенсором соответственно.

3. CMOS-технология

На ранней стадии, обычные CMOS-чипы использовались для отображения, однако качество картинки было низким, в связи с низкой световой чувствительностью КМОП-элементов. Современные CMOS-сенсоры изготавливаются по более специализированной технологии, что привело к стремительному росту качества изображения и светочувствительности за последние годы.

CMOS-чипы обладают рядом преимуществ. В отличие от CCD-сенсоров, CMOS-сенсоры содержат в себе усилители и аналого-цифровые преобразователи, что значительно снижает стоимость конечного продукта, т.к. он уже содержит все необходимые элементы для получения изображения. Каждый CMOS-пиксель содержит электронные преобразователи. По сравнению с CCD-сенсорами, CMOS-сенсоры обладают большим функционалом и более широкими возможностями интеграции. Из других преимуществ следует также отметить более быстрое считывание, меньшее потребление энергии, высокую сопротивляемость шумам и меньший размер системы.

Тем не менее, наличие электронных схем внутри чипа приводит к риску появления более структурированного шума, например полос. Калибровка CMOS-сенсоров при производстве также более сложна, по сравнению в CCD-сенсорами. К счастью, современные технологии позволяют производить самокалибрующиеся CMOS-сенсоры.

В CMOS-сенсорах существует возможность считывания изображения с отдельных пикселей, что позволяет «оконизировать» изображение, т.е. считывать показание не всего сенсора, а лишь его определенного участка. Таким образом, можно получить большую частоту кадров с части сенсора для последующей цифровой PTZ (англ. pan/tilt/zoom, панорама/наклон/масштаб) обработки. Кроме того, это дает возможность передавать несколько видеопотоков с одного CMOS-сенсора, имитируя несколько «виртуальных камер»

4. HDTV и мегапиксельные камеры

Мегапиксельные сенсоры и телевиденье высокой четкости позволяет цифровым IP-камерам обеспечивать более высокое разрешение изображения, чем аналоговые CCTV-камеры, т.е. они дают большую возможность различить детали и идентифицировать людей и объекты – ключевой фактор в видеонаблюдении. Мегапиксельная IP-камера обладает как минимум вдвое большей разрешающей способностью, по сравнению с аналоговой CCTV-камерой. Мегапиксельные сенсоры являются ключевым моментов в телевидении высокой четкости, мегапиксельных и мульти-мегапиксельных камерах. И могут быть использованы для обеспечения экстремально высокой детализации изображения и многопотокового видео.

Мегапиксельные CMOS-сенсоры более широко распространены и гораздо дешевле чем мегапиксельные CCD-сенсоры, несмотря на то, что есть и довольно дорогие CMOS-сенсоры.

Сложно изготовить быстрый мегапиксельный CCD-сенсор, что конечно же является недостатком, и следовательно сложно изготовить мульти-мегапиксельную камеру с использованием CCD-технологии.

Большинство сенсоров в мегапиксельных камерах в целом аналогичны по размеру изображения VGA-сенсорам, с разрешением 640х480 пикселей. Однако мегапиксельный сенсор содержит больше пикселей, чем VGA-сенсор, соответственно размер каждого пикселя в мегапиксельном сенсоре меньше размера пикселя в VGA-сенсоре. Следствием этого является меньшая светочувствительность каждого пикселя в мегапиксельном сенсоре.

Так или иначе, прогресс не стоит на месте. Идет стремительное развитие мегапиксельных сенсоров, и их светочувствительность постоянно возрастает.

5. Основные отличия

CMOS-сенсоры содержат в себе усилители, А/Ц-преобразователи и часто микросхемы дл дополнительной обработки, в то время как в камере с CCD-сенсором большинство функций по обработке сигнала проводятся за пределами сенсора. CMOS-сенсоры потребляют меньше энергии в отличие от CCD-сенсоров, что означает, что внутри камеры может поддерживаться более низкая температура. Повышенная температура CCD-сенсоров может увеличить интерференцию. С другой стороны CMOS-сенсоры могут страдать от структурированного шума (полосы и т.д.).

CMOS-сенсоры поддерживают «оконизацию» изображения и многопотоковое видео, что невозможно в CCD-сенсорах. CCD-сенсоры обладают как правило одним А/Ц-преобразователем, в то время как в CMOS-сенсорах им обладает каждый пиксель. Более быстрое считывание в CMOS-сенсорах позволяет их использовать при изготовлении мульти-мегапиксельных камер.

Современные технологические достижения стирают разницу в светочувствительности между CCD- и CMOS-сенсорами.

6. Заключение

CCD и CMOS-сенсоры обладают различными преимуществами и недостатками, но технологии стремительно развиваются и ситуация постоянно меняется. Вопрос о том выбрать ли камеру с CCD-сенсором или с CMOS-сенсором становится несущественным. Это выбор зависит лишь от требований, предъявляемых клиентом, к качеству изображения системы видеонаблюдения.

© Компания «Автономные Системы Безопасности», 1997–2022, Установка видеонаблюдения и других систем безопасности

Ccd что это

Аббревиатура CCD (Charge-Coupled Device) означает “прибор с зарядовой связью” (ПЗС). Технология сканирования CCD получила свое название по типу датчиков изображения, который в ней используется – CCD (ПЗС).

Процесс сканирования:

Оригинал протягивается над стеклом экспонирования, подсвечивается с помощью источника света – флуоресцентной лампы. Отраженный от оригинала свет, преломляясь системой зеркал, фокусируется при помощи сферической линзы, на CCD-камеру с датчиками изображения, вызывает в них электрический сигнал, который затем преобразуется в цифровой код и сохраняется в виде файла.

Для того чтобы охватить всю ширину области сканирования в CCD сканерах используется от 1 до 4 CCD-камер. Например, в сканере Contex HD 2530 (25”) – 1 камера, в сканере Contex HD 5450 (54”) – 4 камеры. Каждая камера отвечает за свой участок по ширине области сканирования.

Особенности CCD-технологии:

1) Источник света – флуоресцентная лампа

В технологии CCD оригинал подсвечивается белым светом. В качестве источника белого света используется флуоресцентная лампа.

Недостатки:

Увеличенное время выхода в готовность

Для того, чтобы достичь белого цвета нужной температуры такая лампа должна выходить на режим в течение часа с момента включения. Можно начинать сканировать и раньше, но возникнет искажение цветов.

Повышенное потребление энергии и невысокий ресурс лампы

Для того, чтобы быть готовым к работе сканер должен поддерживать лампу в рабочем состоянии – лампа должна постоянно “гореть” (если её выключить, то сканер вновь придется выводить на режим). Эта особенность приводит к повышенному потреблению энергии, а главное, к снижению ресурса лампы.

2) Камера CCD включает 4 датчика

Камера CCD состоит из 4-х линейных светочувствительных датчиков. Перед 3-мя из них установлены светофильтры соответственно красного, зеленого и синего цветов (RGB). Светофильтры выделяют красную, зеленую и синюю составляющие из отраженного от оригинала белого света. Четвертый линейный датчик служит для сканирования в монохромном режиме.

Недостатки:

Повышенная стоимость технологии и увеличенное время сканирования в цвете связанное с дополнительной обработкой данных.

Линейные датчики пространственно разнесены друг относительно друга. Во время сканирования красная составляющая будет считываться в позиции [x,y] и в то же время зеленая составляющая в позиции [x,y + смещение], а синяя в позиции [x,y + 2*смещение]. Для получения достоверной информации о цвете в заданной точке, требуется дополнительная математическая обработка данных, что приводит к удорожанию технологии.

3) Оптическая система состоит из линз и зеркал

Линейный размер CCD-камеры составляет 50-80 мм в зависимости от модели сканера. Этот размер существенно меньше ширины области сканирования (свыше 300 мм), с которой производит считывание эта камера. Поэтому для каждой камеры нужна оптическая система, состоящая из линзы и зеркал. Линза используется для уменьшения изображение оригинала до размеров CCD-камеры. Кроме того, чтобы изображение было резким оно должно оказаться в фокусе линзы, а для этого требуется разнести считывающий датчик и сканируемый оригинал на расстояние около 1 метра. Понятно, что при этом габариты сканера сильно возрастают. Для уменьшения габаритов до разумных размеров используется система преломляющих зеркал.

Повышенные габариты и масса сканера

Оптическая система, состоящая из линз и зеркал, увеличивает габариты и массу сканера

Ограниченная геометрическая точность сканирования

Проходя через линзу, отраженный свет претерпевает искажения, которые известны в оптике под названием сферических аберраций. В силу этого геометрическая точность сканирования снижается. Возникающие искажения производитель компенсирует путем сложной математической обработки данных.

Высокая чувствительность к внешним воздействиям

Элементы оптической системы крепятся на отдельных кронштейнах. Минимальные смещения элементов оптической системы, приводят к рассогласованию изображения в местах стыковки соседних CCD-камер. Возникает так называемый “эффект склейки”.

В силу этой причины CCD-сканеры очень чувствительны к вибрациям, механическим воздействиям, перепадам температур и требуют регулярной калибровки. Пользователь должен быть внимательным и постоянно проверять, не появился ли указанный недостаток вновь и не пора ли провести калибровку.

Что такое CCD-матрица?

CCD-матрица / Charge-Coupled Device или ПЗС-матрица / Прибор с зарядовой связью – это аналоговая интегральная микросхема, в составе которой есть светочувствительные фотодиоды, выполненные из кремния или оксида олова. Принцип работы данной микросхемы основан на технологии приборов с зарядовой связью (ПЗС).

История CCD-матрицы

Впервые прибор с зарядовой связью был применен Джорджем Смитом (George Smith) и Уиллардом Бойлом (Willard Boyle) в Лабораториях Белла крупнейшей в США корпорации AT&T Bell Labs в 1969 г. Они вели исследования в области видеотелефонии и так называемой «полупроводниковой пузырьковой памяти».

Вскоре миниатюрные приборы получили довольно широкое распространение и стали использоваться как устройства памяти, в которых заряд размещался во входном регистре микросхемы. Спустя какое-то время способность элемента памяти получать заряд за счет фотоэлектрического эффекта стала основной целью применение CCD устройств.

Еще через год, в 1970 году, исследователи все той же Лаборатории смогли зафиксировать изображения с помощью простейших линейных устройств, что собственно и взяли на вооружение инженеры Sony. Данная компания и по сей день активно работает в области CCD технологий, вкладывая в данное направление огромные финансовые вложения, всячески развивая производство ПЗС-матриц для своих видеокамер. Кстати, микросхема ПЗС-матрицы была установлена на надгробной плите главы компании Sony Кадзуо Ивама, который скончался в 1982 году. Ведь именно он стоял у истоков начала производства ПЗС-матрицы в массовом объеме.

Не остался без внимания и вклад изобретателей CCD-матрицы, так в 2006 году Уиллард Бойл и Джордж Смит получили награду Национальной Инженерной Академии США за свои разработки в данной сфере, а в 2009-м году им вручили Нобелевскую премию по физике.

Принцип работы ПЗС-матрицы

CCD-матрица практически полностью выполнена из поликремния, который изначально был отделен от кремниевой подложки специальной мембраной. При подаче напряжения на мембрану посредством поликремневые затворы сильно изменяются электрические потенциалы, расположенные вблизи электродов проводника.

Перед экспонированием и подачей на электроды определенной мощности напряжения, происходит сброс всех зарядов, которые образовались ранее, а также наблюдается преобразование всех элементов в идентичное или первоначальное состояние.

Комбинация напряжений на электродах создает потенциальный запас или так называемую яму, где скапливаются электроны, появившиеся в определенном пикселе матрицы в процессе экспонирования под воздействием световых лучей. В зависимости от интенсивности силы светового потока находится и объем накопившихся электронов в потенциальной яме, поэтому чем она больше, тем выше будет мощность итогового заряда определенного пикселя.

После завершения экспонирования, последовательные изменения напряжения питания электродов происходят в каждом отдельно взятом пикселе, рядом с которым наблюдается распределение потенциалов, в результате чего заряды перемещаются в заданном направлении — к выходным пикселям ПЗС-матрицы.

Состав элементов CCD-матрицы

В общих чертах конструкция CCD-элемента может быть представлена в виде кремниевой подложки p-типа, снабженной каналами из полупроводника n-типа. Над данными каналами располагаются электроды из поликристаллического кремния с изолирующей мембраной из оксида кремния.

После подачи электрического потенциала на данные электроды, в ослабленной зоне под каналом n-типа возникает потенциальная ловушка (яма). Ее основной задачей является сохранение электронов. Частица света, попадающая в кремний, провоцирует генерацию электронов, которые притягиваются потенциальной ловушкой и остаются в ней. Большое количество фотонов или яркий свет обеспечивает мощный заряд ловушки, после чего необходимо рассчитать и усилить значение полученного заряда, который специалисты именуют фототоком.

Процесс считывания фототоков CCD-элементов осуществляется с так называемыми последовательными регистрами сдвига, которые конвертируют строку зарядов на входе в серию импульсов на выходе. Данный поток импульсов собственно и является аналоговым сигналом, который поступает на усилитель.

Таким образом, в аналоговый сигнал можно преобразовать заряды строки из CCD-элементов с помощь регистра. На практике же последовательный регистр сдвига в CCD-матрицах выполняется посредством все тех же CCD-элементов, построенных в одну строку. При этом работа данного устройства основывается на умении приборов с зарядовой связью обмениваться зарядами своих потенциальных ловушек. Такой процесс осуществляется за счет наличия специализированных электродов переноса, которые размещаются между соседними CCD-элементами. В момент подачи на ближайший электрод повышенного потенциала, при этом заряд переходит под него из потенциальной ямы. В то же время между CCD-элементами обычно располагаются два-четыре электрода переноса, от количества которых зависит фазность регистра сдвига, именуемого двухфазным, трёхфазным или четырёхфазным.

Подача разных потенциалов на электроды переноса синхронизирована таким образом, что переход зарядов потенциальных ловушек всех CCD-элементов регистра выполняется практически одновременно. Так за один «шаг» переноса, CCD-элементы перемещают по цепочке заряды справа налево или слева направо. При этом крайний CCD-элемент отдаёт свой заряд усилителю, который расположен на выходе регистра. Таким образом, становится вполне очевидно, что последовательный регистр сдвига является устройством с последовательным выходом и параллельным входом.

После того, как завершается процесс считывания абсолютно всех зарядов из регистра появляется возможность подать на его вход новую строку, затем еще одну и так далее. В результате получается непрерывный аналоговый сигнал, в основе которого лежит двумерный поток фототоков. После этого, входной параллельный поток, поступающий на последовательный регистр сдвига, обеспечивается совокупностью вертикально ориентированных последовательных регистров сдвига, именуемой параллельным регистром сдвига. Вся эта конструкция в собранном виде как раз и является устройством, именуемым сегодня CCD-матрицей.

Сравнение CMOS И CCD в Видеонаблюдение

Сенсоры CCD и CMOS последние несколько лет находятся в состоянии непрерывного соперничества. В данной статье мы постараемся рассмотреть преимущества и недостатки данных технологий. ПЗС-матрица (сокр. от «прибор с зарядовой связью») или CCD-матрица (сокр. от англ. CCD, «Charge-Coupled Device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью. В CCD-сенсоре, свет (заряд), падающий на пиксель сенсора, передается от микросхемы через один выходной узел, или через всего лишь несколько выходных узлов. Заряды преобразуются в уровень напряжения, накапливаются и рассылаются как аналоговый сигнал. Этот сигнал затем суммируется и преобразуется в числа аналого-цифровым преобразователем, вне сенсора. КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник; КМДП; англ. CMOS, Complementary-symmetry/metal-oxide semiconductor) — технология построения электронных схем. На ранней стадии, обычные CMOS-чипы использовались для отображения, однако качество картинки было низким, в связи с низкой световой чувствительностью КМОП-элементов. Современные CMOS-сенсоры изготавливаются по более специализированной технологии, что привело к стремительному росту качества изображения и светочувствительности за последние годы. CMOS-чипы обладают рядом преимуществ. В отличие от CCD-сенсоров, CMOS-сенсоры содержат в себе усилители и аналого-цифровые преобразователи, что значительно снижает стоимость конечного продукта, т.к. он уже содержит все необходимые элементы для получения изображения. Каждый CMOS-пиксель содержит электронные преобразователи. CMOS-сенсоры обладают большим функционалом и более широкими возможностями интеграции. Одной из основных проблем при использовании CMOS-матриц в видеокамерах было качество изображения. CCD-матрицы обеспечивали и обеспечивают сейчас более низкий шумовой уровень. В результате CMOS-чипы чрезвычайно плохо вели себя при низкой освещенности, по сравнению с CCD-чипами. И поскольку низкая освещенность — одна из основных трудностей при видеосъемке, это было главным барьером для использования CMOS-матриц. Однако, опыт производства, накопленный за годы развития CMOS, позволил с каждым новым поколением этих сенсоров существенно снижать фиксированные и случайные шумы, влияющие на качество картинки. Еще одно слабое место CMOS — искажения, появляющиеся при захвате динамического изображения вследствие слабой чувствительности сенсора. Изображения автомобилей могут содержать очень яркие элементы, такие как фары, солнце, а также очень темные участки, например, на номерных знаках. По этой причине для обработки сцен с большими контрастными перепадами необходим широкий динамический диапазон. ПЗС-сенсор обладает хорошими параметрами динамического диапазона, однако предусмотренный в КМОП доступ к отдельным пикселям, дает куда больше возможностей для получения лучшего динамического диапазона. Также при использовании CCD-матриц яркие пятна сцены могут создавать вертикальные линии на картинке и мешать распознаванию номерного знака из-за выцветания и смазывания. Несмотря на то что CCD-матрицы имеют более высокую характеристику чувствительности, основным фактором, ограничивающим их применение, является низкая скорость считывания заряда и, как следствие, невозможность обеспечения высокой скорости формирования изображения. Чем выше разрешение матрицы, тем ниже скорость формирования изображения. В свою очередь, технология CMOS, объединяющая светочувствительный элемент и микросхему обработки, позволяет получать высокую скорость формирования кадра даже для 3 Мп сенсоров. Однако использование мегапиксельных CMOS-сенсоров для IP-камер систем видеонаблюдения требует эффективного сжатия потока данных. Наиболее распространенными алгоритмами компрессии в IP CCTV в настоящее время являются M-JPEG, MPEG4 и H.264. Первый нередко реализуется непосредственно на CMOS-сенсоре самим производителем матрицы. Алгоритмы MPEG4 и H.264 – более эффективные, но требуют мощного процессора. Для формирования потока реального времени с разрешением более 2 мегапикселей в CMOS IP-камерах используются сопроцессоры, обеспечивающие дополнительные вычисления. В настоящее время IP-камеры на основе CMOS-сенсоров становятся все популярнее в первую очередь благодаря поддержке технологии со стороны лидеров IP видеонаблюдения. При этом их стоимость выше, чем аналогичных камер на CCD. И это несмотря на то, что технология CMOS, объединяющая аналоговую и цифровую части устройства, позволяет создавать более дешевые камеры. Ситуация такова, что сегодня стоимость IP-камеры определяется ее возможностями и характеристиками. Принципиальным является не тип матрицы, а программное обеспечение, реализуемое процессором камеры.

Преимущества CCD матриц: Низкий уровень шумов, высокий коэффициент заполнения пикселов (около 100%), высокая эффективность (отношение числа зарегистрированных фотонов к их общему числу, попавшему на светочувствительную область матрицы, для CCD — 95%), высокий динамический диапазон (чувствительность), хорошая чувствительность в IR-диапазоне.

Недостатки CCD матриц: Сложный принцип считывания сигнала, а следовательно и технология, высокий уровень энергопотребления (до 2-5Вт), дороже в производстве.

Преимущества CMOS матриц: Высокое быстродействие (до 500 кадров/с), низкое энергопотребление (почти в 100 раз по сравнению с CCD), дешевле и проще в производстве, перспективность технологии (на том же кристалле в принципе ничего не стоит реализовать все необходимые дополнительные схемы: аналого-цифровые преобразователи, процессор, память, получив, таким образом, законченную цифровую камеру на одном кристалле).

Недостатки CMOS матриц: Низкий коэффициент заполнения пикселов, что снижает чувствительность (эффективная поверхность пиксела ~75%,остальное занимают транзисторы), высокий уровень шума (он обусловлен так называемыми темповыми токами — даже в отсутствие освещения через фотодиод течет довольно значительный ток) борьба с которым усложняет и удорожает технологию, невысокий динамический диапазон.

Как и любая технология, технологии CMOS и CCD обладают преимуществами и недостатками, которые мы постарались рассмотреть в данной статье. При выборе камер необходимо учитывать все плюсы и минусы данных технологий, обращая внимание на такие параметры как светочувствительность, широкий динамический диапазон, энергопотребление, уровень шума, стоимость камеры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *